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The dispersion equation is analyzed for waves in a strongly magnetized, electron-positron plasma in which
counterstreaming electrons are cold in their respective rest frames. For propagation parallel to the magnetic
field the dispersion equation factorizes into equations for two longitudinal modes and four transverse modes.
Instabilities occur in both longitudinal and transverse modes, with the most notable being at low wave numbers
where a longitudinal branch has purely imaginary frequency. For oblique propagation at small angles, the
modes reconnect at points where the parallel modes intersect, either deviating away from each another, or
being separated by a pair of complex modes. In addition, intrinsically oblique branches of the dispersion
equation appear. The results are applied to an oscillating model for a pulsar magnetosphere, in which the
oscillations are purely temporal with a frequency well below relevant wave frequencies, and in which the
counterstreaming becomes highly relativistic. We assume that the medium may be treated as time stationary in
treating the wave dispersion and wave growth. The wave properties, including the wave frequency, vary
periodically with the phase of the oscillations. The fastest growing instability is when the counterstreaming is
nonrelativistic or mildly relativistic. A given wave can experience bursts of growth over many oscillations.
Mode coupling associated with the cyclotron resonance may be effective in generating the observed orthogo-
nally polarized modes at phases of the oscillation where the �relativistic� cyclotron and wave frequencies are
comparable.
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I. INTRODUCTION

Two inadequately understood aspects in the physics of
radio pulsars are how the observed radio emission is gener-
ated �1� and why there is a mixture of two orthogonally
polarized modes �OPMs� in the escaping radiation �2,3�. Pul-
sar emission is extremely bright and can be explained only in
terms of a plasma instability. However, possible instabilities
seem too slow to allow effective wave growth. The growth is
limited by the relativistic outflow of the plasma in two ways.
First, the change in the plasma parameters along the flow
path limits the growth time, with the limit being the more
severe the narrower the bandwidth of the growing waves.
Second, both the growth rate and the bandwidth of the grow-
ing waves decrease with increasing Lorentz factor of the
streaming motion. Even for the broadest-band, fastest-
growing instability �4�, and for the lower Lorentz factors, �
�10–100 now favored �5–7�, it is difficult to account for
effective growth. Rapid wave growth is required, but it
seemingly precludes the most obvious interpretation of
OPMs. Any instability favors one wave mode over others—
the fastest growing mode—and after many e-folding growth
lengths, the resulting radiation is effectively in this fastest-
growing wave mode, and should be completely polarized in
the sense of this mode. OPMs, which are an almost universal
feature of the observed emission, imply that the escaping
radiation is often a roughly equal mixture of two elliptically
polarized modes, and that the rays corresponding to the two
modes propagate along significantly different ray paths. For
the ray paths to be significantly different, refraction must
occur relatively close to the source region, where the wave
frequency is comparable with some natural frequency of the
plasma, all of which decrease rapidly with increasing height.
The observations of OPMs raise two obvious problems. The

first problem is how a roughly equal mixture of two modes is
produced so routinely. The simplest interpretation of OPMs
involves assuming that the radiation is generated as a
roughly equal mixture of two modes, but this assumption
seems to be excluded by the requirement for rapid growth.
The second problem is that observational evidence from
single pulses for relatively large circular polarization sug-
gests that the two modes can be substantially elliptically po-
larized �8�, implying that the polarization is imposed in a
region where the �relativistic� cyclotron frequency is compa-
rable with the wave frequency, but this occurs only at heights
far above the source region in conventional models �9�. A
possible way of overcoming these difficulties is provided by
an oscillating model for pulsar electrodynamics, involving
large-amplitude oscillations in the parallel electric field
�10–12�. The large amplitude oscillations are the result of
assuming that the electric field and current are not constant,
and so inductive effects are important in the screening of the
vacuum electric field �11�. The conventional assumption is
that screening is electrostatic. Estimates of the oscillation
frequency for standard pulsar parameters gives, in the center-
of-mass frame of the plasma, a frequency of order 106 Hz.
The plasma frequency calculated with the same parameters is
of order 109 Hz. It is thus reasonable to make the assump-
tion that the oscillations lead to a slowly varying medium
when compared with radiation around the region of the
plasma frequency, as discussed in this paper.

In such a model, the dominant effect is counterstreaming
of the electrons and positrons, with Lorentz factors up to
�max�106. Counterstreaming instabilities due to relative mo-
tion of large groups of particles in the context of pulsar emis-
sion have been considered; they do not suffer from the prob-
lem of low beam densities, and the growth rates are usually
limited by the necessarily high Lorentz factors �13�. In the
existing literature �13,14�, the existence of counterstreaming
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that is adequate to account for the wave growth is postulated,
for example, as a result of bursty pair generation. An advan-
tage of the oscillating model is that the relative motion of the
two components has a clear physical origin. This model can
allow more efficient growth of a streaming instability
through two effects: the absence of relativistic suppression of
the growth rate at phases where the relative streaming is
nonrelativistic or mildly relativistic, and the relatively slow
net outflow allowing more time for wave growth. The model
may also account for OPMs through mode coupling at
phases where the oscillating counterstreaming has Lorentz
factor close to �max, and the cyclotron frequency is near its
minimum, which can be below the frequency of the escaping
radiation at its source.

In this paper we consider the dispersive properties of a
magnetized, relativistic, counterstreaming, electron-positron
plasma and their possible implications for instabilities and
mode coupling in a pulsar magnetosphere. The application to
pulsar emission involves wave propagation in an intrinsically
time-dependent medium. This allows the possibility of insta-
bility at one phase of the oscillation and mode coupling at
another phase. Rather than the wave growth and mode cou-
pling regions being separated in space, as in a conventional
model, they are separated in time �phase of the oscillation� in
an oscillating model. Although there is an extensive literature
on mode coupling in a spatially inhomogeneous, stationary
plasma, we are unaware of any discussion of mode coupling
in a temporally varying, homogeneous medium. We com-
ment briefly on the implication, basing our comments on
Hamilton’s equations for a ray in a medium in which the
temporal variations depend on a single parameter �the coun-
terstreaming speed�.

Our basic model is a counterstreaming electron-positron
pair plasma, such that electrons move in one direction and
positrons in the other along magnetic field lines, with speed
�c and Lorentz factor �= �1−�2�−1/2, oscillating between �
=1 and �=�max�106. Although the medium is time depen-
dent, we assume that it is locally stationary in treating the
wave dispersion. This is a valid approximation provided that
the wave frequency � is much greater than the oscillation
frequency; for typical model parameters the ratio is �103

�11�. The oscillating model implies an electric field parallel
to the magnetic field, and we neglect the direct effect of the
electric field on the plasma dispersion. The effect of a paral-
lel electric field in wave dispersion in the birefringent
vacuum is known, but we are unaware of any discussion on
its effect on plasma dispersion. The vacuum contribution
may be treated using the Heisenberg-Euler Lagrangian �15�,
and it is negligible here. For simplicity we assume that the
number densities of electrons and positrons are equal.

In Sec. II we summarize the properties of the wave modes
in the absence of streaming; these properties are helpful in
understanding the mode structure in the presence of counter-
streaming. In Sec. III we discuss the case of parallel propa-
gation �i.e., k �B�, and we extend the discussion to slightly
oblique angles in Sec. IV. Mode coupling in a time-
dependent, homogeneous medium is discussed in Sec. V. The
application to pulsars is discussed in Sec. VI, and the con-
clusions are summarized in Sec. VII.

II. NONSTREAMING, COLD, PURE-PAIR PLASMA

Before considering the effect of counterstreaming, it is
relevant to review wave dispersion in a cold, magnetized pair
plasma in the absence of streaming, �=0. The inclusion of
positrons introduces additional modes that have no counter-
part in the familiar case of a cold electron gas, often called
the “magnetoionic” theory �16�. The counterpart of the mag-
netoionic theory for equal numbers of electrons and posi-
trons �“pure pair plasma”� �17,18� is the relevant case here. A
pure pair plasma is nongyrotropic: the contributions of each
species of particle to the off-diagonal terms in the dielectric
tensor are proportional to the sign of the charge, and the
terms cancel exactly for nonstreaming electrons and posi-
trons. Such a dielectric tensor is equivalent to that for a
uniaxial crystal with dielectric constants K�=1−�p

2 / ��2

−�e
2� and K� =1−�p

2 /�2, implying dispersion relations n2

=K� for the ordinary mode and n2=K�K� /KL, with KL
=K� sin2 �+K� cos2 �, for the extraordinary mode. Unfortu-
nately the conventional use of “ordinary” and “extraordi-
nary” in magnetoionic theory is based on a different criterion
�16�, and is inconsistent with the usage, that we adopt here,
for a uniaxial crystal. In this paper, �e is the cyclotron fre-
quency, � is the angle between the direction of wave propa-
gation and the magnetic field, �p is the plasma frequency,
defined by �p

2 =e2n0 /�0m, where n0 is the sum of the number
densities of electrons and positrons, and n=kc /� is the re-
fractive index.

When viewed as equations for �2 as a function of k2

=n2�2 /c2, the dispersion relation n2=K� becomes a qua-
dratic equation, and the dispersion relation n2=K�K� /KL be-
comes a cubic equation. The dispersion relations for the two
ordinary modes are �2=�o�

2 , with

�o�
2 =

1

2
��p

2 + �e
2 + k2c2�

�
1

2
���p

2 + �e
2 + k2c2�2 − 4�e

2k2c2�1/2. �1�

The higher-frequency branch has a cutoff k2→0 at �2=�p
2

+�e
2 and approaches the light line �2=k2c2 at high frequen-

cies. The lower-frequency branch extends from �=0 at k
=0 to a resonance k→	 at the cyclotron frequency. The
ordinary mode is strictly transverse and has no dependence
on angle � so that its properties are the same for oblique as
for parallel propagation.

The dispersion relation for the extraordinary modes is

��2 − �p
2���2 − �o+

2 ���2 − �o−
2 � + k2c2�p

2�e
2 sin2 � = 0.

�2�

The solutions simplify for parallel propagation, when the fi-
nal term in Eq. �2� is absent. Then Eq. �2� factorizes into
�2=�p

2, which corresponds to a longitudinal mode, and a
quadratic equation, which corresponds to two transverse
modes that are degenerate with the two ordinary modes �and
that are polarized orthogonally to the ordinary modes�. The
dispersion curves appear in Fig. 1. The dispersion line �2

=�p
2 crosses the lower-frequency branch of the degenerate

ordinary and extraordinary modes at k2c2=�p
2�e

2 / ��e
2−�p

2�.
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For slightly oblique propagation the longitudinal mode
and the lower-frequency branch of the extraordinary mode
reconnect separating the extraordinary mode into three
branches, one from �=0 to a resonance near �=�p, the sec-
ond from the cutoff at �=�p to a resonance near �=�e, and
the third branch is close to the upper-frequency branch of the
ordinary mode. The dispersion curves are illustrated in Fig.
1.

The wave properties for a pair plasma are modified if the
number densities of electrons and positrons are not strictly
equal. One of the three �equal and opposite� pairs of off-
diagonal terms in the dielectric tensor is then nonzero. If the
difference between the number densities is sufficiently small,
the resulting gyrotropy may be regarded as leading to a cou-
pling between the ordinary and the extraordinary modes. In
the opposite limit, where the admixture of positrons is small,
the qualitative effect of the admixture on the magnetoionic
theory is to introduce a resonance at �=�e and to add an
extra branch into both magnetoionic modes �19�. Although
our assumption that the number densities are strictly equal is
overly restrictive in discussing the nonstreaming case, it is
not so restrictive in the presence of counterstreaming. Even
for equal number densities, the inclusion of counterstreaming
causes the pair plasma to be gyrotropic, such that the modes
are elliptically polarized in general.

III. PARALLEL PROPAGATION IN
A COUNTERSTREAMING PLASMA

A counterstreaming plasma has two components propa-
gating in opposite directions. Here we consider counter-
streaming of electrons and positrons, in a frame in which
they have equal velocities. The components of the response
tensor for a cold counterstreaming pair plasma are written in
the Appendix. The wave properties for parallel propagation
are discussed in this section.

A. Longitudinal modes

It is convenient to introduce the parameters

�0 = ��, �� = �k��c . �3�

The dispersion equation for longitudinal �E �k� waves is

��0
2 − ��

2�2 − �p
2��0

2 + ��
2� = 0, �4�

which we regard as a quadratic equation for �0
2 as a function

of ��
2. The two solutions are given by

�0
2 =

1

2
�p

2 + ��
2 �

1

2
�p

2�1 + 8��
2/�p

2�1/2. �5�

The high-frequency branch of Eq. �5� has a cutoff �k=0 im-
plying �� =0� at �=�p /�, with the frequency increasing with
increasing k, given approximately by

� ���p/� + 3k2�2c2�/2�p for 8��
2 
 �p

2,

k�c + �p/21/2� for 8��
2 � �p

2.
	 �6�

This branch may be interpreted as the counterpart of the
Langmuir wave mode, as may be seen by taking the non-
streaming limit �→0, where it reduces to �=�p.

The low-frequency branch of Eq. �5� is real for ��
2��p

2,
and imaginary for ��

2�p
2, with �0=0 for ��

2=�p
2. On the

lower branch, in place of Eq. �6�, one has

� ��ik�c for 8��
2 
 �p

2,

k�c − �p/21/2� for 8��
2 � �p

2.
	 �7�

In the absence of streaming �→0 the lower-frequency
branch disappears.

B. Instability

The lower frequency branch includes a streaming instabil-
ity: for ��

2�p
2, �0

2 is negative, implying a mode with a
purely imaginary frequency. The maximum �as a function of
k� growth rate occurs when ��

2=3�p
2 /8, and has the value

�max = 
1

8
�1/2�p

�
, k = 
3

8
�1/2 �p

��c
. �8�

This maximum growth rate decreases as a function of the
Lorentz factor of the streaming, so that the most favorable
condition for growth is when the streaming is nonrelativistic
or mildly relativistic, i.e., ��1.

C. Transverse dispersion equation

The dispersion equation for parallel-propagating trans-
verse waves is

0
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FIG. 1. Dispersion curves � vs k in normalized units for �left� parallel propagation and �right� slightly oblique propagation in a cold pure
pair plasma with �e=2�p. Dashed lines in the left panel are longitudinal parts and solid lines are transverse parts. In the right panel �
=0.1 rad to show the separation of the o and x modes.

WAVE DISPERSION IN A COUNTERSTREAMING, COLD, ... PHYSICAL REVIEW E 77, 046403 �2008�

046403-3



�1 − n2 + �11 �12

− �12 1 − n2 + �11 � = 0, �9�

where expressions for the terms �11 and �12 are written
down in the appendix. Regarding Eq. �9� as a quadratic equa-
tion for 1−n2, where n2=k2c2 /�2=��

2 /�2�0
2 is the square of

the refractive index, its solutions are given by

1 − n2 =
�p

2

�2

��0
2 − ��

2�2 − �2��0
2 + ��

2�
��0

2 + ��
2 − �2�2 − 4�0

2��
2

�
�p

2

�2

�����0
2 − ��

2 + �2�
��0

2 + ��
2 − �2�2 − 4�0

2��
2 , �10�

which may also be written

�2 − k2c2 − �p
2

�2 −
�p

2��� + �����0 � �� − ����0 � �� + ��
�2D

= 0, �11�

where

D = ��0 + �� + ����0 + �� − ����0 − �� + ����0 − �� − �� .

�12�

The solutions of Eq. �11� for �0
2 are

�0
2 = ��0

2��� =
1

2
��2k2c2 + ��� � ��2 + �2�p

2� +
�

2
��,

��
2 = ��2�k2c2 + �p

2� − ��� � ��2�2 + 4�2�p
2��� � ��� ,

�13�

with �=�.
The dispersion curves corresponding to the solutions �13�

are plotted in Fig. 2. The four modes �13� may be regarded as
split versions of the ordinary and extraordinary modes dis-
cussed in Sec. II. This may be seen by noting that the non-
streaming limit corresponds to ��→0, �+→�− in Eq. �13�.
The upper-frequency branches correspond to a streaming-
induced splitting of the upper-frequency branch of the non-
streaming ordinary and extraordinary modes; these non-
streaming modes are degenerate for parallel propagation, and
they remain degenerate for parallel propagation when

streaming is included. For small k, the two lower-frequency
branches may be approximated by

�0
2 ��2 + �2�p

2 − 2��
 �2

�2�p
2 + �2�k�c ,

��2�p
2�

�2�p
2 + �2kc . � �14�

These modes may also be regarded as split versions of the
lower-frequency branch of the degenerate modes discussed
in Sec. II.

D. Instability

An instability occurs in the lowest-frequency branch of
the transverse modes in two ranges of k. The condition for
instability, �0

20, for the lower branch in Eq. �13� becomes

�� − ����k2c2� − k2c2�� − �p
2��� � 0. �15�

There is a region of instability between k=0 and k=k−, a
region of stability �i.e., the mode is real� between k−k
k+, another region of instability in the range k+k
� /�c, and the mode is real for k�� /�c, with

k�c =
�

2��
�

�

2��

1 −

4�p
2�2�2

�2 �1/2

. �16�

The locations of these two solutions are shown in Fig. 3, k−
in the left panel, and k+ in the right.

IV. PROPAGATION AT A SMALL ANGLE

Three new features appear for oblique propagation. First,
the modes are no longer strictly longitudinal or transverse:
all oblique modes have both longitudinal and transverse
components. In particular, the region of k where growth oc-
curs at zero frequency for parallel propagation in the lower-
frequency longitudinal mode is modified for a small angle of
propagation, with the real part of the frequency changing
from zero to a small, nonzero value. The instability in the
parallel-propagating transverse waves is not changed signifi-
cantly at small angles of propagation. Second, as is well
known, where longitudinal and transverse modes cross in the
limit of parallel propagation, they reconnect for oblique
propagation. The modes usually deviate away from each
other, with the polarization changing rapidly from nearly lon-
gitudinal to nearly transverse, or vice versa. Third, in the
presence of streaming an alternative type of reconnection is
possible: two real modes that cross in the parallel limit can
separate with a pair of complex modes connecting them. In
this section we discuss the latter two of these features, start-
ing with the alternative type of reconnection.

A. Intrinsically oblique instabilities

A new feature of oblique propagation is the appearance of
a complex conjugate pair of solutions, where two real modes
�corresponding to the lowest transverse and the lower longi-
tudinal modes� merge to become a pair of modes with one
growing and the other decaying. Figure 4 illustrates the wave
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FIG. 2. Dispersion curves � vs k in normalized units for parallel
propagation in a cold counterstreaming plasma with �=0.3, �e

=2�p. Dotted lines show imaginary parts, dashed lines show longi-
tudinal real parts and solid lines show transverse real parts.

M. W. VERDON AND D. B. MELROSE PHYSICAL REVIEW E 77, 046403 �2008�

046403-4



modes for oblique propagation. The complex modes appear
near kc /�p�5.8, which corresponds to the intersection of
�=� /�−�k and the lower branch of the longitudinal mode,
�=k�c−�p /�2�, at k= 1

2����+�p /�2�. This region of
wave growth is in addition to those identified for parallel
propagation.

The various interactions between modes in the limit of
parallel propagation are modified at small angles of propaga-
tion, as displayed in the various subfigures indicated by the
labels in Fig. 5. In some cases the modification is a deviation
in which the two modes reconnect into two different real
modes, and in other cases two real modes become a complex
conjugate pair of modes, of which one is necessarily a grow-
ing mode. The interactions at different points are displayed
as close-ups in Fig. 5, with the labels indicating the corre-
sponding points on the main diagram.

Consider the specific dispersion curve, for � as a function
of k, in Fig. 5 that corresponds to the lowest transverse
branch for parallel propagation. This branch begins at �=0
for k=0, and is initially imaginary, becoming real and propa-
gating at kc /�p�0.1. As the intersection labeled 2 is ap-
proached, it deflects away from the other modes and remains
a single real mode, and again at intersection 3. At intersec-
tion 4, it joins another mode and forms a pair of complex

conjugate solutions, which then become real again for higher
k. The physical implication of intersection 4 for propagation
through a slowly varying medium is not clear.

The foregoing results are for �e=2�p, which is not real-
istic for a pulsar, which has �e��p. For much larger values
of �e /�p, the topological structures of the dispersion curves
are similar to those for �e /�p�1. Figure 6 illustrates the
case �e /�p�1000 and ��22. For the parameters in Fig. 6,
the curves appear as straight lines, which lines are apparent
in the upper right of Fig. 4. The coupling points are concen-
trated in a region near the origin, in a region at around
kc /�p�2−� /�p�2, and in a region around kc /�p�4
−� /�p�0. The region near the origin contains the cutoff for
the almost longitudinal mode, and the structure shown in
panel 1 of Fig. 5. The structure in panels 2, 3, and 4 of Fig.
5 are in the region around �� /�p ,kc /�p���20,20� in Fig. 6,
and panel 5 of Fig. 5 corresponds to the feature at
�� /�p ,kc /�p���40,0� in Fig. 6. Note that the apparent line
along �=kc in Fig. 6 is actually multiple lines very close
together.

B. High-velocity counterstreaming

At high relative streaming factor ��1, ��1, both the
plasma frequency and cyclotron frequency are reduced, by
factors 1 /�1/2 and 1 /�, respectively. The mode structure
changes in two ways at high �. First, all of the mode inter-
action structure is compressed into a small region of �-k
space near the origin. Outside this region all modes are vacu-
umlike: the dispersion curves approach a set of lines parallel
to the light lines �=kc+C, where C is a constant that de-
pends on the mode. Second, the two regions of instability in
the lowest transverse branch become a single region near
�2�=�2 /4�p

2; this occurs as the two points k− and k+ in Eq.
�16� coalesce.

A graph for the case ��22 ��=0.999� is shown in Fig. 7.
Note that the two highest modes are off the top of the vertical
axis, and that the lowest frequency mode corresponds to the
longitudinal mode. There are two major differences from the
low velocity case. First, where the higher almost-longitudinal
mode and the almost-transverse modes interact, the lowest
almost-transverse mode is imaginary, and so is not coupled
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FIG. 4. Dispersion curves � vs k in normalized units for nearly
parallel propagation ��=0.1 rad� in a cold counterstreaming plasma
with �=0.3, where �e=3�p. Dashed lines are imaginary parts and
solid lines are real parts. Numbers indicate regions expanded in Fig.
5.
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FIG. 3. Magnified dispersion curves � vs k in normalized units for two regions of Fig. 2. The parameter values are �e=2�p. Dashed lines
show imaginary parts and solid lines show real parts. Left: a zoomed region showing the imaginary part of the lowest transverse mode near
k=0. Right: a zoomed region showing the imaginary part of the lowest transverse mode near k=k+ �k+c /�p�6.2 for the chosen parameter
values�.
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to the other modes. The second significant change is the
absence of the coupling at intersection 4 in Fig. 4, which is
due to the transverse branch not being a real mode where it
would intersect the longitudinal branch.

V. SLOWLY VARYING MEDIUM

In an oscillating model of a pulsar magnetosphere �11,12�,
the medium is time dependent. Provided the temporal
changes, and any spatial changes, are sufficiently gradual,
the propagation of a wave through the medium can be treated
using geometric optics, modified by inclusion of mode cou-
pling. Let �=�M�k� be the dispersion equation for a wave
mode M in a locally homogeneous, stationary medium. The
inclusion of slow variations of the medium in space and time
leads to the local dispersion relation being a function of
space and time: �=�M�k ;x , t�. The propagation of rays may
then be treated using a Hamiltonian formalism, with
�M�k ;x , t� playing the role of the Hamiltonian.

A. Hamilton’s equations

In the geometric optics approximation, the propagation of
a ray is determined by Hamilton’s equations

ẋ =
��M

�k
, k̇ =

��M

�x
, �̇ =

��M

�t
, �17�

where the overdot denotes differentiation with respect to an
affine parameter that may be interpreted as time along the ray
path, and where the arguments k, x, t of �M are implicit.
Here we are concerned primarily with the effect of temporal
variations. For simplicity we consider a homogeneous me-
dium, and we further assume that the temporal variations are
due only to the changing relative streaming velocity, de-
scribed by the Lorentz factor ��t�. The last of the Eqs. �17�
then gives

�̇ =
d�

dt

��M

��
. �18�

The assumption that �M depends on t on through its depen-
dence on ��t� allows one to integrate Eq. �18� to find that the
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FIG. 6. Dispersion curves � vs k in normalized units for nearly
parallel propagation ��=0.1 rad� in a cold counterstreaming plasma
with ��22.4 and �=1000�p.
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wave frequency varies with time such that the instantaneous
dispersion relation is always satisfied. We write this condi-
tion as ��t�=�M�k ; t�.

B. Mode coupling

The spatial and temporal variations imply a coupling be-
tween modes: radiation initially in one mode becomes a mix-
ture of two or more modes. Coupled equations for the modes
can be derived provided that there are two distinct time and
space scales: on a fast and small scale one Fourier transforms
and identifies the waves modes, and variations on a slow and
large scale lead to coupling between these modes. Mode cou-
pling in a slowly varying medium is weak except near cou-
pling points, where the dispersion curves intersect. The cou-
pling points of relevance here are defined by the intersections
of the various dispersion curves in the limit of parallel propa-
gation. There are two limiting cases of coupling at any cou-
pling point. If the coupling is weak, a wave approaching a
coupling point stays in the actual mode �for oblique propa-
gation� as the dispersion curve deviates away from the cou-
pling point, with only a small leakage from the initial mode
to the other mode. There is a rapid change in the polarization
near the coupling point, and in weak coupling the polariza-
tion of the wave follows this change. If the coupling is
strong, a wave approaching a coupling point propagates
through it as it would in the strictly parallel case, jumping
from one actual mode to the other, with only a small fraction
of the incident energy remaining in the initial mode. The
polarization of the wave effectively ignores the rapid change
in the modes, and preserves its initial value. Coupling is
strong if the angle of propagation is sufficiently small as the
coupling point is approached, and for larger angles the cou-
pling is weak. This angle, which depends on the details of
the problem, defines a “window:” this phenomenon was first
discussed in the context of ionospheric sounding, where cou-
pling of the o mode to the z mode is effective within the
“Ellis window” �20�. In the temporally varying medium, a
coupling point is approached as a function of time, and the
effectiveness of the coupling is sensitive to the rate of change
of the wave frequency with time, which effectively deter-
mines the size of the “window.” Although these points are
obvious from a qualitative viewpoint, at present there is no
quantitative theory for mode coupling in a time-varying me-
dium.

In the simple case discussed above, where the time depen-
dence is in only the streaming velocity and the medium is
homogeneous, the wave frequency follows the dispersion
curve, and so its variation with time can be inferred from its
variation with � or �. The frequency is shown as a function
of � for a given wave number, in Fig. 8 �the specific case
shown is kc /�p=2.5�.

It is apparent from Fig. 8 that � can either decrease or
increase as a function of �, and that there are only four
regions where coupling can be effective: two near zero real
frequency, and two at nonzero frequency. For example, con-
sider waves generated in the growth region at zero real fre-
quency and small k. As � increases, � changes from imagi-
nary to real, and then increases until it approaches the

coupling point just below �=0.6. The wave passes through a
range of � where � is complex, and after passing through
this region, there are two possibilities: the frequency in-
creases following the upper curve or decreases following the
lower curve. We suspect that there is a counterpart of strong
coupling, such that the wave follows the upper curve, and a
counterpart of weak coupling such that it follows the lower
curve. An important effect of this expected coupling is that it
allows the conversion of the high-growth electrostatic waves
into electromagnetic waves, which may then be converted
into OPMs as discussed below. Thus we expect that through
this time-dependent mode coupling the electrostatic waves
can be largely responsible for driving electromagnetic emis-
sion. In the absence of a theory for mode coupling under
these conditions, we are unable to discuss this point further.

VI. APPLICATION TO PULSAR MODEL

In the oscillating model for the pulsar magnetosphere dis-
cussed in Refs. �11,12�, dispersion in the counterstreaming
pair plasma plausibly satisfies most of the properties as-
sumed in the foregoing discussion. A proviso is that the as-
sumption that the electrons and positrons are cold in their
respective rest frames is not expected to be the case, with at
least a mildly relativistic spread expected �6�. This probably
invalidates our results in the limit of nonrelativistic stream-
ing, where the streaming speed is smaller than the intrinsic
spread in the speeds of the electrons and positrons. Addition-
ally, in this region the acceleration of the particles is at its
maximum value, and a strong electric field is present. As we
are not aware of a theory for the response of an intrinsically
time-dependent medium, we treat the plasma as stationary at
any point for the purposes of calculating the wave disper-
sion. This neglects the effect of the acceleration on the
growth rate, and of the electric field on the wave dispersion.

The inclusion of an electric field has not been discussed in
the literature to our knowledge. The plasma becomes intrin-
sically time dependent due to the constant acceleration pro-
vided by the field. We work in the Fourier domain which is
meaningful provided that the frequencies involved are large
compared with the frequency of the oscillating electric field.
With these provisos, our model should provide a reasonable
guide to the expected properties of the wave dispersion.
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FIG. 8. Dispersion curves � vs � in normalized units for nearly
parallel propagation ��=0.1 rad� in a cold counterstreaming plasma
with kc /�p=2.5, where �e=3�p. Dashed lines show imaginary
parts and solid lines show real parts.
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A. Wave growth over many oscillations

The key feature of the oscillating model of pulsar mag-
netospheres is the intrinsic time dependence of the medium.
In a conventional model, the bulk outflow speed exceeds the
relative streaming speed, and wave growth is limited by the
outflow and the variation with height. As a growing wave �at
a fixed frequency� propagates outward, the frequency range
for wave growth moves to lower frequencies, as the natural
frequencies of the plasma decrease with height along the ray
path, and growth stops when the wave frequency moves out
of the frequency range where growth occurs. Effective
growth requires a large growth rate over a broad frequency
range in a region where the plasma frequency does not
change rapidly with distance along the ray path. In the oscil-
lating model, the ratio of the outward flow speed to the rela-
tive streaming is reversed, and growth in one �half� phase of
the oscillation is limited by temporal changes in the medium.
Growth is strongest during phases where the relative stream-
ing velocity is small �but not smaller than the intrinsic spread
in the speeds of the electrons and positrons�. A wave may
experience many bursts of growth �two per oscillation pe-
riod� before escaping. These two effects, larger growth for
mildly relativistic streaming, and growth over many phases
of the oscillation, can potentially enhance the net growth to a
much greater value than in a nonoscillating model.

Specifically, consider parallel longitudinal waves gener-
ated in the phase of the oscillation where the relative stream-
ing is nonrelativistic ���t��1�. These waves have �=0, and
grow around a preferred k during the nonrelativistic phase.
As ��t� increases the waves change from intrinsically grow-
ing to propagating waves, as discussed in connection with
Fig. 8. Provided these waves remain in a mode of the time-
varying medium, their original properties are restored when
��t� returns to its initial nonrelativistic value. In practice the
pulsar magnetosphere is far from homogeneous and the con-
ditions under which this idealized, periodic evolution might
occur require detailed investigation, which we do not attempt
here.

B. Mode coupling

The oscillating model provides a possible explanation for
the enigmatic OPMs. In many cases OPMs seem to require a
roughly equal mixture of two elliptically polarized modes,
which is strongly indicative of mode coupling associated
with a cyclotron resonance. Assuming that the waves are
initially generated as electrostatic waves, our model allows
them to encounter a cyclotron resonance near their source.
By way of illustration consider a surface magnetic field of
108 T and �max=106; then the minimum cyclotron frequency
is comparable with the frequency of the observed radiation
for a source at ten stellar radii, and for the favored source
heights of several tens of stellar radii, the cyclotron reso-
nance is encountered in the source region four times per
oscillation period. As the frequency passes through the cy-
clotron resonance, each mode changes from nearly linear,
through circular to nearly linear in the orthogonal sense �21�.
A wave remains in its initial mode and follows this change
only if the two modes get out of phase faster than the rate of

change of the shape of the polarization ellipse. For example,
for a source region at 100 stellar radii and a wave frequency
103 times the oscillation frequency, the Lorentz factor passes
through a phase with ��103 in a time �t of order 10−3 of an
oscillation period, implying ��t�1, which is the threshold
for strong mode coupling. A single initial mode is converted
into a roughly equal mixture of two modes for ��t�1.
These numbers allow effective mode coupling.

VII. CONCLUSIONS AND DISCUSSION

We derive the response for a cold, counterstreaming pair
plasma in general and give expressions for the specific case
of equal number densities. For parallel propagation, the dis-
persion equation factorizes into equations for two longitudi-
nal and four transverse modes. Instabilities occur in both the
lowest longitudinal and lowest transverse modes. The disper-
sion curves for longitudinal and transverse modes intersect at
several points, and for propagation at small oblique angles,
the modes reconnect either by deflecting away from each
other, or by two real modes joining to become a complex
conjugate pair. For illustrative purposes, we plot these dis-
persion relations for cases where the relative streaming is
nonrelativistic and the cyclotron frequency is twice or three
times the plasma frequency.

The motivation for this investigation is the application to
the oscillating model of pulsar magnetospheres. The model
introduces several possibly important effects that are absent
in conventional discussions of pulsar radio emission mecha-
nisms: wave frequencies changing periodically with time �in
phase with the oscillations�, wave growth in bursts over
many oscillation periods, and mode coupling associated with
the cyclotron resonance in the source region. The model of-
fers the possibility of overcoming the slowness of wave
growth in conventional models: the growth rate is largest
during the phase where the counterstreaming is mildly rela-
tivistic, and this occurs twice per period of the oscillation
and can continue over many oscillations. Another feature is
that near the phase of the oscillations where the Lorentz fac-
tor is near its maximum �max�106 the cyclotron resonance
crosses �as a function of phase� the wave frequency in the
source region. Mode coupling associated with such a cross-
ing provides a possible explanation for the almost ubiquitous
phenomenon of orthogonally polarized modes. To analyze
this effect in detail we need a theory that is not yet available:
mode coupling due to intrinsically time-dependent effects in
the medium. Without a detailed theory for such mode cou-
pling we are unable to give a quantitative discussion of how
longitudinal waves become transverse waves. One feature
that we note is that Hamilton’s equations imply that the wave
frequency, for waves in an arbitrary mode M, evolves fol-
lowing the instantaneous dispersion relation �=�M�k , t� for
the given mode as the counterstreaming speed � changes.
This enables one to determine how the frequency varies with
� �at fixed k in a homogeneous model�, except where two
dispersion curves cross at a coupling point. Mode coupling is
important near coupling points, and the theory needed is that
for mode coupling due to temporal changes at a coupling
point.
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The assumption that the electrons and positrons are cold
in their respective rest frames is justifiable, as a first approxi-
mation, provided that the streaming speed is much greater
than the intrinsic spread in velocities in the rest frames. We
have in hand the formal generalization to the case where the
electrons and positrons have one-dimensional relativistic
thermal distributions in their rest frames. However, even for
parallel propagation, the transcendental functions in the dis-
persion equation preclude finding general analytic solutions,
and the richness of the detailed results is overwhelming. The
cold plasma case considered in the present paper is an essen-
tial preliminary to detailed consideration of this more general
case. A next step is to consider how thermal effects modify
the wave properties derived here.

APPENDIX: COLD COUNTERSTREAMING
PAIR PLASMA

There are two cases of interest here, the case of two coun-
terstreaming electron plasmas and the case of counterstream-
ing electron and positron plasmas. Only the gyrotropic terms
�12, �21, �23, and �32 differ in the two cases.

The nongyrotropic space components of ����k� for
cold, magnetized, counterstreaming electrons and positrons
or electrons and electrons with number densities n�

= 1
2n�1���, �= �n+−n−� / �n++n−�, n=n++n− �defined in the

respective rest frame of each component� may be written

����k� = �̄���k� + ��̂���k� , �A1�

where the space components of ����k� are
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For counterstreaming electrons and positrons,
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and for two counterstreaming electron plasmas
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with �0=��, ��=�k��, �� =�k��.
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